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Revealing Urban Dynamics by Learning Online and Offline
Behaviours Together

TONG XIA and YONG LI, Beijing National Research Center for Information Science and Technology,
Department of Electrical Engineering, Tsinghua University, China

Urban problems and diseases accompanied by the pace of urbanization have drawn attention to the importance of understanding
urban dynamics, while a deep and comprehensive understanding is challenging due to our diversified lifestyles in the modern
city. In this paper, we propose an urban dynamics modeling system to characterize the regularity of urban activity dynamics
as well as urban functions by learning residents’ online and offline behaviours together. Built on a state-sharing hidden
Markov model, our system utilizes online activities of App usage and offline activities of mobility in different urban regions
and different time slots for learning. The learnt state sequence of each region reveals urban dynamics with the corresponding
urban functions. We evaluate our system via a large-scale mobile network accessing dataset, which discovers ten hidden states
characterizing different life modes and eight representative dynamic patterns corresponding to different urban functions.
These discovered dynamic patterns and inferred functions are validated by social media check-ins and the land-use published
by the government with 81% accuracy. Based on our model, we propose two applications, crowd flow prediction and popular
App prediction, which outperforms the state-of-the-art approaches by 36.1% and 15.7%, respectively. This study paves the
way for extensive city-related applications including urban demand analysis, land-use planning, and activity prediction.

CCS Concepts: • Information systems → Spatial-temporal systems; Data mining; • Human-centered computing
→ Empirical studies in ubiquitous and mobile computing; • Computing methodologies→ Machine learning.
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1 INTRODUCTION
Revealing urban dynamics, i.e., how the types and intensity of human activities in the city change along with
the time, has always been a crucial social-economic task for both researchers and governments [2, 24]. With
the ever-increasing urbanization process, human activities in the city are becoming increasingly dynamic and
complex, making it more difficult to understand and model [16]. Moreover, nowadays human daily activities
include not only the commuting between home and office, meeting friends, shopping, etc. in the physical space,
but also the checking-in, liking the online friends, buying and selling goods, etc. in the cyberspace [7, 26],
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which are more high-dimensional and dynamic. Although uncovering the regularity of such daily activities
is challenging, it is of great significance to tackle a series of urban problems, e.g., overcrowding, inadequate
infrastructure, traffic congestion, pollution, etc. [50]. What’s more, different kinds of dynamics are mainly caused
by different land-use of the urban regions [45, 46], which indicates that revealing urban dynamics is directly
related with the inference of urban functions to facilitate better urban planning [31].
Until now, most of our understanding about urban dynamics come from traditional surveys conducted by

human agents [25]. While this way of collecting data provides detailed information about urban behaviours, it
remains hard to update and presents many weaknesses regarding generalization and geographical scope. Luckily,
with the ubiquitous mobile devices, massive data recording various human activities is available to reveal urban
dynamics. Recently, related works aim to uncover the temporal regularity of human activities, such as detecting
the patterns of mobility behaviours in the city via passive mobile positioning data [5], visualizing the level of
activities at a given urban location across multiple temporal resolutions [2], etc. However, these existing studies
only utilized offline behaviours for urban dynamics understanding by statistics and visualization methods, which
cannot realize specific and predictable human activity modeling.
In this paper, our goal is to model urban dynamics with regard to human online and offline behaviours in

the city and further to infer urban functions. Despite its practical importance, using both online and offline
activities is non-trivial due to three challenges: 1) Urban residents’ activities are dynamic and complex. Using
which kinds of online and offline features to characterize the activity type and intensity is the first challenge. 2)
Underlying the various activities, there are several basic city states characterizing different life modes such as
busy working or peaceful sleeping, which compose urban dynamics. To model urban dynamics from the city
scale, similar activities, whether in the same or different regions, should be detected as the same state. However,
on the other hand, though the states are the same, the dynamic patterns of different regions could be different
due to their urban functions. Moreover, the data of each region would be limited to learn its own states and
dynamics. Therefore, how to build one robust model to learn the difference as well as the similarity is the second
challenge. 3) The relation between urban dynamics and urban functions is implicit, and the function of each
urban region could be single, compound, or even dynamic. How to infer it according to the learnt activity states
is the third challenge.
To overcome these challenges, we propose an urban dynamics modeling system by leveraging the following

three key designs. First, we select human online activities of App usage and offline activities of mobility as
features. The intuitive motivations of utilizing these two features is that accessing to the Internet though Apps
[1] and moving between different places [11] are the most important activities in the cyber and physical urban
space, respectively. The App usage, i.e., how frequently the Apps are used, and the mobility, i.e., the volume of
crowd flows, can reflect the type and the intensity of activities in a region. To extract these features, we utilize
a mobile cellular network accessing dataset, which records when and where a user uses which Apps. Second,
to model urban dynamics based on these features, we propose a state-sharing hidden Markov model (HMM).
Regarding urban residents’ online and offline activities as time series, we aim to detect a common set of hidden
states characterizing basic life modes in the city and to reveal urban dynamics by the transition among these
states. Particularly, the state set is shared by all regions yet each region has its own state sequence. Through
this strategy, similarity and difference among different regions are learnt at the same time, and the problem of
data sparsity is also solved. Third, to infer and interpret the urban functions from the learnt state sequences, we
design a clustering algorithm to divide these state sequences into several typical dynamic patterns, where each
pattern maps to a specific function. By combining the semantics of states in different time slots, the relations
between urban dynamics and functions are uncovered. To summarize, the contribution of our work is four-fold:
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(1) We investigate the problem of understanding urban dynamics using human activities in both physical and
cyber space recorded by mobile cellular network accessing dataset. To the best of our knowledge, this is
the first study to utilize both online and offline behaviours to reveal urban dynamics.

(2) We propose a novel urban dynamics modeling system based on the state-sharing HMM, where the states
characterized by the type and intensity of human activities are shared by all urban regions, but each region
has its own state sequence. It achieves qualitative representations of urban dynamics as the transitions
between different states.

(3) We evaluate our method by a real-world large-scale dataset in Shanghai, China. We have learned ten
hidden states and discovered eight typical dynamic patterns corresponding to different urban functions.
These discovered dynamic patterns and inferred functions are validated by social media check-ins and the
land-use published by the government with 81% accuracy.

(4) We design two applications based on our model, i.e., crowd flow prediction and popular App prediction.
Extensive experiments demonstrate that our proposed state-sharing HMM outperforms the state-of-the-art
approaches by 36.1% and 15.7%.

2 RELATED WORK
In this section, we introduce the related from three perspectives: urban dynamics modeling, urban functions
inferring, and hidden Markov model with its application.
Urban dynamics modeling. Urban dynamics, generally defined as how sociological indicators (e.g., the

population, the land use) change over time [9], can be divided into two aspects: long-term urbanization with
sustained economic growth [22], and short-term anthropogenic changes and activity rhythms [2, 24, 48]. We
focus on the latter one and our goal is reveal urban dynamics in terms of human activities with different types
and intensity. Relevant to our work, Zhang et al. [48] demonstrated that the activity volume of an area is not
uniformly distributed across time, and different areas have different activity volume temporal distributions cross
the geo-tagged social data. Also using the geo-tagged data from Twitter, Sofiane et al. [2] built activity time
series for different cities and found that close neighborhoods tend to share similar rhythms. Louail et al. [20]
demonstrated that the city shape and hot-spots change with the course of the day. Fabio et al. [24] captured the
spatio-temporal activity in a city across multiple temporal resolutions, and visualized different activity levels in
different time slots. From the perspective of individuals, Clemente et al. [8] revealed different urban lifestyles via
sequences of purchases and mobility behaviours by coupling credit card data with mobile phone data. In this
work, we regard urban activities as time series and aim to reveal the daily regularity hidden in them. Different
from the existing works utilizing only offline activities, we model urban dynamics by learning online and offline
activities together. Besides, different from the works based on statistical analysis [2] and data visualization [24],
we propose a specific model, which achieves urban dynamics understanding and prediction at the same time.

Urban functions inferring. Traditional approaches to infer the actual land-use often rely on costly human
surveys, yet it is still coarse-grained and limited in geographical scope. Recently, with the availability of massive
data from different sources, efficient methods to infer urban functions have been proposed. Pijiaonowski et al.
[28] utilized GIS data to model and predict the change of land-use in the city, while Lenormand et al. [15] applied
a functional network approach to determine land use patterns from mobile phone records. Louail et al. [19]
utilized origin-destination (OD) matrices to capture the structure of cities and showed that cities essentially differ
by their proportion of two types of flows: integrated (between residential and employment hotspots) and random
flows. Yuan et al. [43] compared urban function discovering results only based on static Points of Interest (POIs)
data and based on both POIs and mobility pattern of taxicabs, which proved that mobility reflecting the commute
has a strong relationship with urban functions. Besides, Wang et al. [34] and Zhang et al. [45] showed that the
temporal traffic pattern and the activities recorded by check-ins also can be utilized to infer urban functions. Our
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work aims to infer the functions by the discovered dynamic patterns via a large-scale mobile cellular network
accessing dataset. Moreover, unlike previous works to identify fine-grained yet static urban functions, we pay
more attention to the composition of a region’s functions with its dynamic changes.
Hidden Markov model and its application. Hidden Markov Model (HMM) is a statistical model in which

the time series being modeled is assumed to be a Markov process with unobserved (i.e., hidden) states[29].
In order to improve the performance of HMM, parameter sharing are very helpful to deal with increasingly
complex tasks [12]. One well-known example is shared-distribution HMM , where clustering is carried out at
the distribution level and output distributions are shared with each other if they exhibit acoustic similarity [14].
Another example is tied-mixture HMM, which is a kind of semi-continuous HMM [3, 13, 17]. It assumes that each
output is generated by large amount of continuous probability density functions (PDFs), while the weight of the
PDFs are discrete. By enforcing PDF sharing, it is able to improve the modeling accuracy as its fully using of data.
Our proposed state-sharing HMM is also a kind of parameters sharing HMM. Unlike shared-distribution HMM, our
model can be learned end-to-end, which means no following clustering is need to force the parameters shared.
Also unlike tied-mixture HMM, our model is designed to share a set of states which generates the continuous
observations directly instead of only sharing underlying PDFs.

HMM and its variants are also widely used in human activity modeling. One important application is individual
mobility prediction [23, 47, 52]. These works assumes that a user’s movement is actual the successive transition
on several hidden states. These states are the key places he visits frequently (e.g, his home, his office, etc.). The
observed spatial points are distributed around the key locations. Therefore, HMM is suitable to first determine the
key states under the trajectory, and than predict the next location the user would visit based on the state transition
probability. Compared with the existing works, the novelty of our study lies applying HMM in urban dynamics
revealing problem. We regard urban dynamics as the transition between hidden states which characterize human
activities with different types and intensity, and we also achieve urban dynamics prediction.

3 PRELIMINARIES

3.1 Motivations
In order to reveal urban dynamics in terms of daily activity rhythms, we investigate the variations of the
aggregated online and offline activities along with time. In this section, we discuss the motivations to select
mobility as offline activity feature and App usage as online activity feature.
Human mobility, reflecting daily life pattern by its distinct modes, is the most important social-economic

activity in the physical space [38]. Consequently, the aggregated mobility behaviour, i.e., how many people leave
from, arrive at and stay in each urban region and time slot, reflects urban commuting patterns, indicating that it
should be used as offline feature for urban dynamics modeling [42].

While in terms of online activities, it is recently reported that more than 80% of the mobile phone using time in
all markets are spent in Apps [1], which demonstrates the purpose of accessing the Internet could be reflected by
the App usage. Moreover, the App usage varies significantly with the regions of different land-use, which indicates
it has a strong correlation with urban functions [41]. Utilizing the mobile cellular network accessing dataset,
we also explore the correlation between App usage and land-use explicitly. As Figure 1(a) shows, App usage in
the regions with different land-use are obviously different, which reflects people’s different App preferences in
different places. We also show the cumulative distribution function of the statistical correlation between land-use
components and App usage in Figure 1(b). The results show that for more than 80% of the regions, they are
strongly correlated (above 0.76). Therefore, we utilize App usage as online bebaviour representation to model
urban dynamics and infer urban functions.

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 1, Article 30. Publication date: March 2019.



Revealing Urban Dynamics by Learning Online and Offline Behaviours Together • 30:5

(a) For different types of regions (i.e. regions with relatively higher
frequency of certain types of land-use), we calculate the percentage
of different App categories used.

(b) Cumulative distribution function of the statistical corre-
lation between App usage and the the land-use.

Fig. 1. Intuitive and statistic correlation between App usage and land-use.

3.2 State-sharing HMM
Regarding the App usage and mobility features in different time slots as time series, we are able to apply HMM
to reveal urban dynamics. To deal with the problem of data sparsity and to detect similar as well as different
dynamics of urban regions, we propose a state-sharing HMM. Before formally defining the model, we give an
exampled illustration in Figure 2.

(a) States and transition probabilities (b) State sequences of two different regions

Fig. 2. An exampled illustration of the state-sharing HMM, where five states with different semantics are shown in five
circles of different colors, and their transition probabilities are represented by the colorful arrows. As shown in (a), the thicker
the line is, the greater the probability is. Two state sequences of different regions in a working day are shown in (b), where A
is a residence region and B is an office region.

In this example, S0, S1, S2, S3 and S4 are five hidden states characterizing human online and offline activities
with different types and intensity. S0 denotes the state with low activity intensity both in App usage and mobility.
S2 denotes the state that few people are moving and relaxing Apps are used most frequently, while S3 denotes
the state that few people are moving and official Apps are used most frequently. Both with few Apps used, S1
denotes a sudden moving-out crowd flow yet S4 denotes a sudden moving-in crowd flow. Besides, S0, S2 and S3
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Fig. 3. Framework of the proposed system for urban dynamics modeling.

have larger probability of turning to themselves, Thus, they could continue to appear in a long period before
jumping to another state. Compared with S2 and S3, S1 and S4 have smaller probability of turning to themselves.
Thus, they are more likely to appear in a rather short period. For each each urban region, these states appear
in turn, which compose its state sequence. There are two different state sequences based on the common set
of states and the same transition probabilities as shown in Figure 2(b). The sequence of region A, a residential
region, shows the dynamics that few people are active at night, many people leave in the morning, shopping
Apps are used most frequently during the day, and many people go back in the afternoon. On the contrary, the
sequence of region B, which is an official region, shows the dynamics that many people arrive in the morning and
leave in the afternoon, and use stock Apps instead of relaxing ones frequently during the day. To summary, states
are shared but state sequence is unique for each region, which represents the different urban dynamics. The goal
of this paper is to discover the shared state set for the city, and own states state sequence for each region.

3.3 Problem Statement and Solution Overview
Based on the ideas discussed above, we formally define the urban dynamics modeling problem. Given the online
and offline activity observations of different regions in the city, we aim to address the following three aspects
regarding urban dynamics: First is to discover the hidden states in the city, which characterizes human activities
with different types and intensity. Second is to detect urban dynamic patterns, which is revealed by the hidden
state sequence and could be mapped to urban functions. Third is to predict urban dynamics. Specifically, it is to
predict the crowd flows and the popular Apps for each region in the next time slot.

We show the framework of our proposed system in Figure 3, which includes four modules named Preprocessing,
Modeling, Annotation and Application. Specifically, we first extract App usage and mobility as the input features
for each region in different time slots from the mobile network accessing records. Then, we fed them into the
state-sharing HMM to discover the city states. Based on the HMM, we learn the state sequence of each region,
which reveals the urban dynamics and functions. Besides, applications of predicting the crowd flows and popular
Apps can be achieved based on the model.

4 METHOD

4.1 Preprocessing
Mobile cellular network accessing data records when and under which base station a user is using which Apps.
To detect the dynamics of urban regions, which are segmented by the major road networks, the first step is to
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extract aggregated App usage and mobility features from individual records. For convenience, we discretize one
day into several time slots. To distinguish them in the working and non-working day, we use index [1,n] for the
former and [n + 1, 2n] for the latter. After mapping the base station to the region and change the timestamp to
the time slot, the i-th record is denoted by < ui ,τi ,дi ,ai >, where ui is the user ID, τi is the time slot and дi is the
region ID. In the following parts, we denote the set of users asU = {u1,u2, ...,uM }(1 ≤ m ≤ M), the set of regions
as G = {д1,д2, ...,дR }(1 ≤ r ≤ R), and the set of time slots as T = {τ1,τ2, ...,τN }(1 ≤ n ≤ N ), respectively.

4.1.1 Preprocessing for App Usage. Given a urban region, we define the App usage as how many people are
using a certain kind of Apps during one time slot. For the whole city, it is denoted as a 3-dimensional tensor
X ∈ RR×N×La , where R is the number of regions, La is number of App categories, and N is the number of time
slots. Since different Apps in the same category play similar roles in reflecting human activities, we only use the
App category to characterize the type of human online activities. To share the states in the city, we normalize the
App usage to eliminate the influence of the population in different regions. We first compute the TF-IDF weights
for the usage in each time slot. TF-IDF [27], short for term frequency-inverse document frequency, is a numerical
statistic that is intended to reflect how important a word is to a document in a collection or corpus. Here, we use
the TF-IDF weight to indicate how popular an App category is in the given time slot. The TF-IDF weight for the
n-th time slot denoted by Xn can be calculated as follows,

Xn(r , l) =
X (r ,n, l)∑
X (r ,n, :)

× log
∑
X (:,n, :)∑
X (:,n, l)

. (1)

Then, for each region we conduct the max normalization on the weights over different time slots as follows,

X̂ (r ,n, l) = Xn(r , l)/ max
1≤n≤N ,l ≤l ≤L

(Xn(r , l)), (2)

where X̂ denotes the normalized App usage tensor.

4.1.2 Preprocessing for Mobility. A user’s trajectory is defined as the base station sequence he has visited in time
order. By traversing the trajectories of all users, we can obtain the mobility features that how many people leave
from, arrive at and stay in each region in different time slots [49]. We denote the mobility features as Lr , Ar and
Sr , where Lr = (Lr,1,Lr,2, ...,Lr,N ), Ar = (Ar,1,Ar,2, ...,Ar,N ) and Sr = (Sr,1, Sr,2, ..., Sr,N )(1 ≤ n ≤ N ) with Lr,n ,
Ar,n and Sr,n denoting the number of people who leave from, arrive at and stay in the r -th region in n-th time
slot, respectively. Similar with App usage, considering the difference for land area and population, we normalized
these three vectors by their maximum value. The normalized mobility features denoted by L̂r , Âr and Ŝr can be
obtained as follows:

L̂r,n = Lr,n/ max
1<n<N

(Lr,n),∀n = 1, 2, ...,N ,∀r = 1, 2, ...,R, (3)

Âr,n = Ar,n/ max
1<n<N

(Ar,n),∀n = 1, 2, ...,N ,∀r = 1, 2, ...,R, (4)

Ŝr,n = Sr,n/ max
1<n<N

(Sr,n),∀n = 1, 2, ...,N ,∀r = 1, 2, ...,R. (5)

4.2 Modeling
4.2.1 State-sharing Hidden Markov Model. For r -th region, we define the observation sequence from the online
and offline activities as Or = Or,1Or,2...Or,n ...Or,N , where Or,n denotes the observation in n-th time slot. It is
a multi-dimensional feature vector denoted by Or,n = ⟨or,n,1,or,n,2, , ...or,n,l ...or,n,L ⟩(L = La + 3) with or,n,l
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presenting observation for App usage from X̂ as (1)-(2) and mobility as (3)-(5) as follows:

or,n,l =


X̂ (r ,n, l), 1 ≤ l ≤ La ,

Âr,n , l = L − 2,
L̂r,n , l = L − 1,
Ŝr,n , l = L.

(6)

Observation sequence set of the city denoted by O = {O1,O2, ...,OR } is the input of our model, and our goal
is to learn the corresponding hidden state sequence under them. We define the common state set including K
hidden sates as S = [s1, s2, ..., sK ]. We assume that all the input observationsO are generated by these states. As a
general practice for HMM, the observation variables on,l , (l = 1, 2, ...,L) are independent and on,l is generated
from Gaussian, i.e., p(on,l |sn = k) = N (µk,l ,σk,l ), where µk,l and σk,l are the mean and variance for hidden state
k . Therefore, we build the state-sharing HMM parameterized by θ = {π ,A, µ,σ }, where:

(1) π ∈ RK×1 denotes the initial distribution over K hidden states, i.e., πk = p(s1 = k)(1 ≤ k ≤ K);
(2) A ∈ RK×K denotes the transition probabilities among the K hidden states. If (n − 1)-th state is sn−1 = j,

then the probability for n-th state sn to be k is given by Aj,k , i.e., p(sn = k |sn−1 = j) = Aj,k ;
(3) µ,σ ∈ RK×L denotes themean and variance of observation probability, i.e.,p(or,n,l |sn = k) = 1√

2πσk,l
exp (− (or ,n,l−µk,l )2

2σk,l ).

4.2.2 Model Training. The model parameters θ = {π ,A, µ,σ } can be learned by maximizing the likehood
function, i.e., the probability of the observations represented by human activities for all regions under different
hidden states. According to Baum-Welch algorithm [29], the likehood function can be maximized by optimize the
Q-function step by step. Therefore, the key of the parameter inference is to identify the Q-function denoted by:

Q(θ ,θ t ) =
∑
S

p(S |O ;θ t ) lnp(O, S |θ ), (7)

which is different from a general HMM. In our model, we need to maximize the likehood function of all regions
at the same time. Thus, Q function can be defined as follows,

Q(θ ,θ t ) =
R∑
r=1

∑
S

p(S |Or ;θ t ) lnp(Or , S |θ ). (8)

We train the model using Expectation-Maximization (EM) algorithm [4], which is described in detail in
Appendix I. Starting with random initialized parameters, EM algorithm alternates between E-step and M-step
round by round until the stop condition is satisfied. In the (t + 1)-th round E-step, it computes Q(θ ,θ t ) =
R∑
r=1

∑
S
p(S |Or ;θ t ) lnp(Or , S |θ ). In M-step, it finds a new estimation θ (t+1) to maximizes Q-function. After several

rounds of iteration, the model tends to converge with the output of parameters θ = {π ,A, µ,σ }.

4.2.3 State Sequence Learning and Clustering. After model training, we obtain K hidden states parameterized
by {µ,σ } and the transition probability parameterized by θ = {π ,A}. Therefore, we can learn the hidden state
sequence under each observation sequence Or by Viterbi algorithm [33]. As discussed before, the common states
set characterizes the fundamental life modes in the city, which reveals the similarity among different regions,
while the hidden state sequence of each region indicates the uniqueness of its own dynamics.

In order to detect typical dynamic patterns, we further cluster urban regions according to their state sequences.
To divide the regions with similar dynamics into the same cluster, we measure their distance by Hamming
distance of their state sequences [10]. Specifically, we define the distance of each two state sequences as the
number of different states they have in the corresponding time slots. For example, as shown in Figure 2, states of
these two region in 2-th, 3-th and 4-th time slot are different, thus the distance is 3. Because states are discrete
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(a) Cumulative distribution of the number of
records for each user

(b) Usage for each App category (c) Spatial distribution for different
regions

Fig. 4. Data overview.

and cannot be averaged, we apply K-mediods algorithm for clustering [38]. K-mediods defines the intra-cluster
distance as the average of other regions to the center. Unlike K-means, it selects one region from all with the
minimized intra-cluster distance as the cluster center in each round. To determine how many patterns are suitable,
we adopt Davies-Bouldin index (DBI) [6] to determine the number of clusters, which reflects the ratio between
inter-cluster distance and intra-cluster distance. A smaller DBI usually indicates a more effective clustering. Since
people attend different activities in the places with specific urban functions, the discovered states and dynamic
patterns are closely related to urban functions. Therefore, we can map dynamic patterns into urban functions.

5 EXPERIMENTS
In this section, we set up a series of experiments to evaluate our proposed model. We first introduce the used
datasets and the parameters. Then we discuss the learned dynamics and inferred functions in details. After that,
we evaluate the the performance of our proposed application.

5.1 Datasets
1) Mobile cellular network accessing data.We use this dataset to extract human online and offline activity
features. This dataset containing mobile users’ accessing logs to the cellular network is collected by collaborating
with a major mobile network operator in Shanghai, China from April 20th to 26th, 2016. Through deep packet
inspection, each access record is characterized by an anonymized user ID, timestamp, cellular base station with
GPS location and the metadata of the networking communication. With the geographical information of cellular
base stations, we can recover users’ trajectories and further to extract offline mobility features. Beside, we can
also identify Apps from the networking metadata by adopting SAMPLES [40] to extract online App usage.
Overall, the dataset contains over 1,700,000 unique devices, 2000 unique Apps, and 9800 base stations in

Shanghai. We divide these Apps into 9 categories by referring to the App Store (iOS Apps) and Google Play
(Android Apps), which includes social, music, reading, game, shopping, restaurant, navigation, office, and stock.
The cumulative distribution of the number of records for each user is shown in Figure 4(a). It shows that more
than 40% of the users are highly active with than more 200 records. The frequency of mobile users accessing
different App categories is shown in Figure 4(b), where App category is arranged in descending order of using
frequency. This figure indicates that all kinds of App are used for more than 10 million times in one week and the
most popular category is social. This large-scale and fine-grained dataset enables the representative of our study.

2) Road network. The road network data is used to obtain the boundaries of urban regions. Urban regions
segmented by roads are the basic geographic units of residents’ daily life and we use them to reveal urban
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dynamics. We crawled the road network from the online map service. Using the major roads of high way and
ring roads, Shanghai is divided into 1595 non-overlapping regions spontaneously. Their distribution is shown in
Figure 4(c). From this figure we can observe that the regions in downtown are fine-grained and those around
suburb are coarse-grained.
3) Check-in dataset.We utilize social-media check-ins in different time slots to validate the uncovered urban

dynamics. Check-in refers that a user records his activity with the location information using smartphones [51].
We collected this dataset from one of the most popular location-based sevice provider in China. Each check-in
record consists of anonymized user ID, check-in time, check-in location and point of interest (POI). Totally, it
contains over 130,000 records appearing in Shanghai and covers the POI categories including entertainment, hotel,
shopping, leisure, fitness, school, tourism, transportation, finance, company, business, factory, industry, technology
park, economic development zone, high-tech development zone, residence, life service, township and village.

4) Land-use map. We use this dataset to validate the inferred urban functions. We collected the latest urban
land-use planning map from the government, which contains six land-use types including residence, business,
industry, public infrastructure, framing and forestry, and ecological restoration.

Ethics. We have carefully considered the ethical issues of the data and taken effective measures to protect
users’ privacy by referring to previous related works which also utilized massive individual data [32, 41]. First,
when the users use the network service provided by the cellular network operator or social-media platform,
they have authorized that their data can be collected and analyzed by the provider. Moreover, all the personal
identification information have been stripped (or replaced by a random string) by the provider and we never
had the direct access to the actual user ID. Second, the interpretation of urban dynamics and functions is of
great significance to urban planning. These datasets are used for the public problem solving benefiting the city
management, not for the commercial purposes or personal purposes. Third, in our study, all the data has been
aggregated into different regions, which does not contain any user’s preference, indicating that individual privacy
is well protected. Last but not least, the raw individual data is stored in the provider’s servers, which is accessed
only by the employees. We only utilize aggregated pre-processed results to carry out this study. Our research has
been reviewed and approved by both the provider and local university institutional board.

5.2 Experiments Setting
In order to determine the time granularity of our model, we compare the activity observations when using
different length of time slot (i.e., 10 minutes, 20 minutes, 30 minutes, 1 hour, 2 hours, 3 hours, 4 hours). When
the length of time slot is shorter than 1 minutes, the observations of neighbor time slots are very similar. But
when the length of time slot is longer than 3 hours, the dynamics that the observation sequence reflects are too
coarse-grained. Thus, we show the parts of the observations of 30 minutes and 2 hours in Figure 5(a), (b), (d) and
(e). Compare Figure 5(a) and (c), we can observe that the changing trend with time of App usage for different
time granularity is consistent. Compare Figure 5(b) and (d), we can observe that peak and valley of mobility for
different time granularity also appear in the same time. Since the short one time slot is, the larger the number of
time slots is. Therefore, we set the length of the time slot as 2 hours as a trade-off between time granularity and
model complexity.
Then, to decide how many hidden states are suitable to present the characters of whole city, we analyze the

principal components of the mean vectors {µ1, µ2, ...µk , ..., µ20} of the Gaussian distribution and the probability
of observation P(O |θ ) =

∏R
r=1 p(Or |θ ) for different number of hidden states. The cumulative variance ratio (CVR)

and P(O |θ ) with different number of states are shown in Figure 5(c) in red and blue, respectively. From the
results we can observe that when the number of hidden states is more 10, both the two curves converge to their
maximum. Thus, we set K = 10 to learn states as different as possible at the lowest training cost.
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(a) The App usage of working day and non-
working day for Hulan Road region when
the length of time slot is 30 minutes

(b) Mobility features of working day and non-
working day for all regions when the length of
time slot is 30 minutes

(c) Observation probability and cumulative
variance ratio for different K

(d) The App usage of working day and non-
working day for Hulan Road region when
the length of time slot is 2 hours

(e) Mobility features of working day and non-
working day for all regions when the length of
time slot is 2 hours

(f) DBI variation for clustering

Fig. 5. Parameters setting.

Finally, we use DBI to determine the number of dynamic patterns. For different cluster numbers, we conduct
the experiments for 10 times and show the mean and standard deviation of DBI for cluster number in Figure 5(f).
When the number of clusters is 8, both the minimum mean and standard deviation are achieved, which means 8
patterns are mostly stable and suitable.

To conclude, we use six days’ mobile cellular network accessing data for model learning and leave the rest day
for prediction. There are 1596 regions, each with an activity observation sequence of length 24 and dimension 12.
Based on these observations, we learn 10 hidden states and detect 8 typical dynamic patterns.

5.3 Results.
5.3.1 States Interpretation. We have learned 10 hidden states as described in Figure 6, where the depth of the
color indicates the activity intensity, and the frequency of different App used reflect the activity type. From the
results we can observe that S4 with the lightest color is the state indicating that people all fall asleep. Similarly,
we can infer that S7 is the state people go to work from home and S2 is the state that people go home from work.
S0, S1 and S3 correspond to working state with social, reading and stock Apps frequently used, while S5, S6 and
S8 correspond to leisure state with social, game and navigation Apps frequently used. The remainders S9 is a
relatively inactive state with the lightest color for all Apps. In this state, few people are moving and use Apps,
which indicates people are having a rest at home.

5.3.2 Dynamic Patterns. We obtain 8 typical dynamic patterns by clustering the learnt state sequences. The state
sequences of each pattern are shown in Figure 7(a) and (c), 8(a), (c), and (e), and 9(a),(c) and (e), where each row

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 1, Article 30. Publication date: March 2019.



30:12 • T. Xia and Y. Li

Fig. 6. The Gaussian mean of emission probability for each hidden state and the transition probabilities among these hidden
states we obtain. Each state is shown in a column, 9 categories of Apps and 3 kinds of mobility are ranked in descending
order by the mean value respectively, where the Bold denotes a value higher than 0.65, the Normal denotes a value higher
than 0.45 but no more than 0.65, and the Light denotes a value lower than 0.45.

(a) State sequences for pattern #1 (b) Mobility visualization for pattern #1

(c) State sequences for pattern #2 (d) Mobility visualization for pattern #2

Fig. 7. Visualization of state sequences and mobility for the residential, where the state sequence of each region is shown
in a row on the left and the normalized mobility of each region is shown in a row on the right.

presents one region’s dynamics from the working day to the non-working day. The corresponding normalized
mobility Ŝ(Staying), L̂(Leaving) and Â(Arriving) are shown in Figure 7(b) and (d), 8(b), (d) and (f), and 9(b), (d)
and (f), respectively. We divide these 8 dynamic patterns into three classes to discuss their functions as follows:
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(a) State sequences for pattern #3 (b) Mobility visualization for pattern #3

(c) State sequences for pattern #4 (d) Mobility visualization for pattern #4

(e) State sequences for pattern #5 (f) Mobility visualization for pattern #5

Fig. 8. Visualization of state sequences and mobility for the official, where the state sequence of each region is shown in a
row on the left and the normalized mobility of each region is shown in a row on the right.

Residential regions: the first class shown in Figure 7 includes pattern #1 and #2. The common feature is that
S7 (in orange color) consistently appears at around 7am of the working day, which means people go to work from
home at that time. From the three mobility features visualized in Figure 7(b) and (d), we can observe that lots of
people stay here before 7am, after 7pm of the working day, and in the whole non-working day. Besides, there are
both a leaving peak (in dark-red color) at around 7am and an arriving peak at around 7pm of the working day
when people go to work and back to home, respectively. These characters give more indicators for the residential
region. The difference between these two patterns is also obvious. S0 (in dark-blue color) and S1 (in navy-blue
color) appear more frequently in pattern #2 than #1, which represents that a small group of people come to
regions in pattern #2 and use stock Apps in the working day. From the mobility of pattern #2, we can also observe
that there are an arriving peak at around 7am and a leaving peak at around 7pm. Thus, compared with pattern

Proc. ACM Interact. Mob. Wearable Ubiquitous Technol., Vol. 3, No. 1, Article 30. Publication date: March 2019.



30:14 • T. Xia and Y. Li

(a) State sequences for pattern #6 (b) Mobility visualization for pattern #6

(c) State sequences for pattern #7 (d) Mobility visualization for pattern #7

(e) State sequences for pattern #8 (f) Mobility visualization for pattern #8

Fig. 9. Visualization of state sequences and mobility for the compound, where the state sequence of each region is shown
in a row on the left and the normalized mobility of each region is shown in a row on the right.

#1, regions in pattern #2 mainly contain houses but also contain some office areas. In summary, pattern #1
corresponds to single residence function, while pattern #2 corresponds mainly to residence but partly to office
function.
Official regions: the second class shown in Figure 8 including pattern #3, #4 and #5. The common feature is

that S4 and S5 (in green-series color) appear frequently during daytime in non-working day, which means few
people comes here in the weekend. The arriving peak at around 7am and the leaving peak at 7pm of working
day also support the interpretation of official areas. During daytime in weekday, S9 (in dark-red color) appears
frequently in pattern #3, while S0 (in dark-blue color) and S1 (in navy-blue color) appear frequently in pattern #4
and #5, representing that people work in the regions of pattern #3 use less Apps especially the stock Apps than in
the regions of pattern #4 and #5. Comparing pattern #4 and #5, we can observe that S7 (in orange color) also
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appears at around 7 am when people leaving from home. Thus regions in pattern #5 mainly contain office but
also contain some residential areas. In summary, pattern #3 corresponds to single office function with few Apps
used, pattern #4 corresponds to single office function with App used frequently, while pattern #5 corresponds
mainly to office but partly to residence function.
Compound regions: the third class shown in Figure 9 including pattern #6, #7 and #8 . The transition of

states is more complex than the first two classes. For pattern #6, S7 (in orange color) appears at anytime of the
two days. The frequency of using Apps is rather stationary and people do not move intensively in a certain
time slot. Therefore, regions in pattern #6 are more likely to be far suburb with low population density. For
pattern #7 and #8, people are very active both in weekday and weekend. The ration of staying is consistently high
both in day and night, and people move frequently in the weekend. Thus these regions can be compound zones
performing different functions in different time slots. Compared with pattern #8, S0 (in dark-blue color) and S1
(in navy-blue color) in pattern #7 appear more frequently in working day. Besides, as shown in Figure 9(f), the
number of people who move in and move out the regions in pattern #8 is always large at all time slot during the
day. Therefore, pattern #7 covers the areas mainly playing the rule as office but also as houses and entertainment
sometime. Pattern #8 contains houses, entertainment areas, office as well as transportation hubs. In summary,
pattern #6 corresponds to suburb function, pattern #7 corresponds mainly to office but partly to residence and
entertainment function, while pattern #8 corresponds to highly dynamic and complex functions.
In summary, these state sequences of the two typical days, reveal the regularity of human activities both in

terms of type and intensity. Different state sequences in the working time and non-working time also can indicate
the functions of a region. Consequently, we discover Pattern #1, #3, #4 and #6 with fundamental functions of
living and working, and we also discover Pattern #2, #5, #7 and #8 with compound and dynamic functions.

5.4 Validations
5.4.1 Validation with Check-ins. Check-ins reveal the purpose of user’s activity in the city intuitively. Although
POIs are static, their popularity in different time slots would be various (e.g, restaurant POIs are most popular at
noon), and this dynamic popularity can be reflected by checked-in frequency. Therefore, we use check-ins to
validate the detected dynamic patterns. Specifically, we explore the correlations between the state sequences and
check-in POIs of each pattern. First, we merge the consecutive time slots under the same hidden state according
to the center of each pattern. Then, we calculate the percentage of all kinds of POIs checked-in during the merged
time slot. The results for three classes as mentioned in Section 5.3.2 are shown in Table 1, 2 and 3, respectively.
In these tables, the Time row shows the time slot segmentation results, whereW denotes working day and N
denotes non-working day, and the number afterW or N represents the hour of the day (e.g.,W 0-W 5 means from
working day 0:00 to working day 5:59). The rest rows show the hidden state, the most frequently checked-in POI
category, and the checked-in percentage in the corresponding time slots, respectively. The observations from
these tables are as follows:

(1) From Table 1, we can observe that residence POIs are more popular in the sleeping hour (W 0-W 5, N 0-N 5)
with the percentage of 37.8% in pattern #1 and 29.9% in patter #2, while transportation POIs are more popular
during rush hour (W 6-W 7, N 6-N 9) with the percentage exceeding 25% when people go to work. This indicates
the dynamics that people rest in the night and go out in the morning, which is consist with the transition from S4
to S7. Besides, during the daytime, people in pattern #1 are more likely to visit leisure POIs, while in pattern #2
company and tourism POIs are more popular, which further proves that the function of pattern #2 changes from
residence to office when the time changes from night to day. This also supports the existence of S0 in pattern #2.

(2) For the official regions as shown in Table 2, few people are active at night (W 0-W 7, N 0-N 9), which supports
why S4 always appears at night. business and factory POIs are distinct in the working hour (W 10-W 17,W 8-W 15)
with the percentage exceeding 20%, which means many people work here during the day as S1 indicates. It is
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Table 1. Check-in POI components in different time slots for the residential, where POIs corresponding to their main
function are highlighted.

Pattern #1 Pattern #2

Time W0-W5 W6-W7 W8-W15 N10-N17 W0-W5 W6-W7 W8-W15 N8-N19N0-N5 N6-N9 N0-N5 N6-N9
State S4 S7 S5 S8 S4 S7 S0 S8

Check-in POI Residence Transportation Leisure Leisure Residence Transportation Company Tourism
Percentage 37.8% 25.3% 28.7% 45.5% 29.9% 25.5% 18.4% 41.2%

Table 2. Check-in POI components in different time slots for the official, where POIs corresponding to their main function
are highlighted, and − denotes there are very few check-in records.

Pattern #3 Pattern #4 Pattern #5

Time W0-W9 W10-W17 N10-N17 W0-W7 W8-W15 N10-N17 W0-W5 W8-W15 N10-N17N0-N9 N0-N9 N0-N9
State S4 S9 S4 S4 S1 S4 S4 S1 S5

Check-in POI - Factory Shopping - Business Tourism Residence Business Transportation
Percentage - 21.3% 33.5% - 42.7% 25.6% 18.3% 20.1% 23.4%

Table 3. Check-in POI components in different time slots for the compound, where POIs corresponding to their main
function are highlighted, and − denotes there are very few check-in records.

Pattern #6 Pattern #7 Pattern #8

Time W0-W9 W10-W15 N10-N19 W0-W5 W8-W15 N10-N19 W0-W5 W8-W21 N10-N19N0-N9 W20-W21 N0-N7 N0-N7
State S4 S9 S4 S4 S1 S9 S4 S9 S9

Check-in POI - Leisure Transportation Residence Business Tourism Transportation Transportation Tourism
Percentage - 19.1% 22.7% 15.6% 21.2% 20.1% 52.4% 15.6% 20.1%

worth noting that in pattern #5, the most popular POIs in the night is residence while in the day is office, which
shows that the function changes from residence to office. This is also consist with our previous analysis for
pattern #5.

(3) For the compound regions as shown in Table 3, the most popular POIs are significantly different in different
time slots, especially for pattern #7, which presents dynamic functions. Moreover, the percentage of transportation
POIs is generally high (i.e., more than 15%) in different time slots in pattern #8 , which indicates its high volume
of crowd flow. Interestingly, Disney Park and Hongqiao Airport are in this pattern, which all highly support the
existence of S9.

In summary, we analyze the POIs checked-in in different time slots for different patterns. All these results are
consistent with the semantic of learnt states and revealed dynamics.

5.4.2 Validation with Urban Land-use. In order to further verify the inferred functions, we compare them with
the urban land-use published by the local government. Figure 10(a) shows the land-use map including 6 type of
residence, business, industry, public infrastructure, framing and forestry, and ecological restoration. From the result
we can observe that Business areas (in red color) such as office buildings and residential areas (in creamy-white
color) are concentrated in the city centre, while outside are other functional areas. We also show the spatial
distribution of the eight dynamic patterns identified by our model in Figure 10(b), where each pattern is presented
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in a unique color. Besides, the corresponding land-use types to our patterns as well as their functions are illustrated
in Table 4. From Figure 10 and Table 4, we can observe that the most central working areas labeled by blue
dash dot and the major living areas labeled by red dash-dot are well consistent between the land-use and our
patterns. Besides, some regions with the large area are found to have the compound function, especially the
Pudong and Jinshan region, which is reasonable since such the land-use of such large regions cannot be single.
Functions of each region are not available directly from the land-use plotting published by the government. To
quantitatively evaluate the dynamic patterns, we randomly select 100 regions of different patterns and manually
label their functions by checking their locations on the map. Finally, the functions of 81% of the selected regions
are consistent with our results, which further demonstrates the effectiveness of our revealed dynamics from
human activities.

(a) Urban land use (b) Dynamic patterns

Fig. 10. The spatial distribution for different regions in Shanghai, where within the polygon marked by blue dash dot is
downtown business area, outside the blue polygon but within the red polygon is downtown residence area, and the polygon
labeled by black dash dot denotes the most two coarse-grained regions Pudong and Jinshan.

Table 4. Relationship between land-use and our patterns.

Dynamic Patterns Pattern #1 Pattern #2 Pattern #3 Pattern #4&5 Pattern #6 Pattern #7&8
Land-use / Region Residence Farming Industry Business Ecological Pudong, Jinshan, etc

Functions living living, working working working, living compound compound

5.5 Application of Prediction
5.5.1 Tasks Design. Our proposed model can learn the patterns of human dynamic activities in different regions
in the city, which enable the prediction of people’s activities in next time slot. We design two prediction tasks as
follows:
Crowd flow prediction: Given the mobility observation of a new day with the length of n time slots, we

predict how many people will move in, move out, or stay in (n + 1)-th time slot for each region.
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Popular App prediction: Given the App usage observation of a new day with the length of n time slots, we
predict which Apps are used frequently in (n + 1)-th time slot for each region.
As mentioned before, six days’ data are used for model training and the rest day’s data is used for prediction

evaluation. It is worth noting that testing data is pre-processed with the same normalization factors and same
parameters of the typical working as mentioned in section 3.1. Specially, for r -th region, we define the given
observations as T = T1,T2, ...,TN , where Tr = Tr,1Tr,2...Tr,n(R = 1959, 1 ≤ n ≤ 11,L = 12). We also define the
candidate pool as all the observations in the training data. Then, our goal is to predict Tr,n+1 for region r at
(n + 1)-th, which is determined by:

sr,n = argmax
1≤j≤K

γ (s jr,n), (9)

sr,n+1 = argmax
1≤k≤K

Aj,k , (10)

Tr,n+1 = argmax
r ′,1≤n′≤N

p(Or ′,n′ |sn+1 = k), (11)

where region r ′ and region r are in the same pattern [30]. We first use the current observations to determine the
optimal state sequence of these n time slots, and then to determine the next state by (9) and (10). The history
observation with the maximum probability in (n + 1)-th state from the candidate pool is selected as the next
observation by (11) [21]. Through anti-normalization, we obtain the number of crowd flows. By sorting the
observation of Apps, we obtain the most frequently used Apps.

5.5.2 Metrics and Baselines. To fully evaluate our system, we adopt three evaluation metrics: TopN-hitrate,
TopN-accuracy and error ratio, which are defined in Appendix II. The first two metrics are used for popular apps
prediction, among which TopN-hitrate is the percentage of regions whose TopN Apps are successfully predicted
(i.e., correct for at least one), while TopN-accuracy reflects how many of the TopN Apps are predicted correctly.
The last one is for crowd flows prediction, which is defined as the mean ratio of the difference between the
prediction and the ground truth. As a comparison, we also conduct the prediction on our dataset by the following
three baselines:
HV : In this method, the prediction of (n + 1)-th time slot is theHistorical Value (HV) in the training data at the
same time slot (i.e., (n + 1)-th time slot in the typical working day) of the same region, directly [49].
ARIMA: Aoto-Regression Integrated Moving Average (ARIMA) is a well-known model for time series analysis
and prediction. We conduct the ARIMA prediction with the most suitable orders (i.e., suitable p, d and q) for each
region [49].
HMM: In order to show the ability of our model to deal with data sparsity, we train an independent HMM for
each region and conduct the prediction based on its own states instead of the shared ones [30].

5.5.3 Results and Analysis. We evalute the performance of different regions with different length of given
observations. First, we partly show the results for pattern #2 (a residential pattern) and #4 (an official pattern) in
Figure 11. Over all, the prediction error is always lower than 50% and the accuracy is always higher than 50%.
Specifically, from Figure 11(a) and (c), we can observe that the prediction for the number of people staying here
is more reliable than that of people moving in or moving out. The error of leaving and arriving prediction are
maximum at 11pm for pattern #2, while the staying prediction error are minimum at 11pm for pattern #4. Because
there are usually few people in the official zones at night, thus the accuracy of the prediction would decline.
Besides, about 5pm there is a rush hour in Friday, thus the prediction of mobility is not as correctly as usual.
From Figure 11(b) and (d), we can observe that Top3-accuracy and Top3-hitrate is stable, where Top3-accuracy
is always more than 50% and the Top3-hitrate is always more than 90% for all patterns in all time slots, which
demonstrates our overall prediction accuracy is credible in different time slots.
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(a) Error for pattern #2 (b) Accuracy for Pattern #2 (c) Error for pattern #4 (d) Accuracy for Pattern #4

Fig. 11. Crowd flows prediction error and popular Apps prediction accuracy in different time slots.

Table 5. Prediction performance compared with baselines.

Metric Error for leaving Error for arriving Error for staying Top3-accuracy Top3-hitrate
HV 85.7% 99.4% 70.4% 51.9% 90.9%

ARIMV 54.0% 47.0% 20.0% 43.9% 79.8%
HMM 54.2% 44.9% 34.7% 42.9% 75.9%
OUR 29.4% 28.3% 19.8% 60.0% 94.6%

Outperform 45.6% (ARIMV) 39.8%(ARIMV) 1.0% (ARIMV) 15.6%(HV) 4.4%(HV)

The complete results are shown in Table 5. Among all the methods, our model always achieves the best
performance across different metrics. The total average crowd flow prediction error for leaving, arriving and
staying of different patterns are 29.4%, 28.3% and 19.8%, obviously lower than the best baseline for 46.6%, 39.8%
and 1.0%, respectively. For popular App prediction, the total average Top3-accuracy and Top3-hitrate is 60.0% and
94.6%, also obviously higher than the best baseline method for 15.6% and 4.4%. Over all, the prediction error for
crowd flows (i.e., the average error of leaving, arriving and staying) is 25.8% and the Top3 prediction accuracy for
App usage is 60.0%, which outperforms the state-of-the-art baseline (i.e., ARIMA for crowd flows prediction and
HV for popular Apps prediction) by about 36.1% and 15.7%, respectively. These results do not only demonstrate
we have realized an accurate modeling for online App usage and offline mobility, but also indicate that we have
achieved reliable urban dynamics prediction.

6 DISCUSSION
Traditional urban dynamics understanding from human surveys is time-consuming, expensive yet coarse-grained
[25]. In this paper, we propose a model to efficiently reveal urban dynamics via large-scale mobile accessing
dataset. Regarding human activities as time series, we are able to detect typical urban states and different dynamic
patterns. We discuss the implications and applications of our work for both researchers and city planners as
follows.

6.1 Implications
First of all, we have discovered ten typical states characterizing different life modes in the city. Since we are
the first to utilize App usage as online behaviour features to model urban dynamics, the states we detected
(e.g., working with App used frequently, working with few App used, having fun through Apps, sleeping with
low crowd flow volume, rush hour with high crowd flow volume, etc.) are more semantic-rich and can provide
comprehensive understanding for urban dynamics. By comparing these states, we can observe that during
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resting time, people keep on using social Apps while during working time, the most frequently used Apps are
unexpectedly stock. We have also found eight dynamic patterns which are composed of these typical states.
Second, compared with existing data-driven urban dynamics revealing systems [2, 24], our proposed state-sharing
HMM can model the aggregated activities in a concise and probabilistic way, which means dynamic prediction
is also achieved at the same time. Take pattern #2 as an example, as shown in Figure 11 (a) and (b), our model
can predict the volume of arriving, leaving and staying as well as the popular Apps in the next time slot. The
prediction error is always less than 40% and the prediction accuracy is always higher than 50%. Based on our
prediction, city planners can make better urban management and resource allocation. Third, we demonstrate that
urban dynamics represented by online and offline behaviours can be used to infer urban functions. Compared with
previous urban function discovering works only using offline human mobility data and statistic POIs [43, 44, 53],
we detect eight dynamic patterns corresponding to different functions. More importantly, we unexpectedly find
that among these dynamic patterns, some indicates single function such as pattern #1, which is simple residence,
while the others indicate dynamic and compound functions such as pattern #2 and #5, which play the role as
residence and office alternately. All of these are our new contributions and make our findings significant.

6.2 Applications
Our work facilitates urban planning from different aspects. First and foremost, it provides more comprehensive
understanding for urban dynamics and urban functions. For architects, planners, and urban designers, neigh-
borhood activity patterns from intensive ethnographic surveys that take years to conduct and given the speed
at which neighborhoods change, can be out of date quickly. The features provided by our work helps examine
the diversity, distribution, and intensity of human activity within a given neighborhood, thus offering insight
to the functioning of the entire neighborhood and supporting the government make better land use planning.
Second, understanding and predicting the pattern of the crowd flow, the offline behaviours we utilize, is of great
significance for traffic dispatching, transportation infrastructure construction, etc. For example, according to
our analysis, there is usually a leaving rush at 7-9am in the residence regions but an arriving rush at 8-10am
in the office regions, which indicates different traffic demand in different regions and different time slots. This
also reminds the traffic management department to dynamically dispatch staffs and resources. Third, analyzing
and predicting the App usage is also necessary for network operator to make better network infrastructure
construction and resource allocation. For the regions with Apps used diversely and frequently, more base stations
and network resource are needed. Considering the dynamics of the usage of different App categories, a reasonable
allocation strategy can improve the utilization of the existing network. In summary, our work sheds light on the
fundamental dynamics in the city, which contributes to solving many urban issues.

6.3 Limitations
This study is the first step to utilize the hidden Markov model to describe the urban dynamics. By sharing states
among different regions, the difference, as well as similarities, could be learned around the city. Our work has
the following limitations. First, the length of our data is one week, and we aggregate it to one working day
and one non-working day. Thus, we only exhibit the regular dynamics of working and non-working day. We
leave investigating more detailed daily, weekly and monthly dynamics as future work. Second, due to the data
limitation, we only evaluate the performance of prediction for the working day. References have demonstrated
that the most important time context for population [34, 39] as well as App usage [18, 36] prediction is the hour
of the day and the day of the week. Therefore, one week’s data is enough for model evaluation [35, 37]. The
performance of the baselines could be improved if more data are available. However, it would be limited, and our
model can still outperform the baselines as state-sharing strategy can make full use of the data and learn robust
results for urban dynamics.
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7 CONCLUSION
In this paper, we reveal urban dynamics by learning human online and offline behaviours together via a large-scale
dataset of mobile cellular network accessing.We propose a state-sharingHMM system that models urban dynamics
and infers functions by extracting human activities of App usage and mobility. The evaluations demonstrate that
our system can effectively detect dynamic patterns. Our work opens a new angle to reveal urban dynamics using
online and offline behaviours together, and paves the way for extensive applications including urban demand
analysis, land use planning, and activity prediction.

APPENDIX I: MODEL TRAINING
The specific process of the state-sharing HMM training and state sequence learning is described as below.

We use the Baum-Welch algorithm to train the model. Starting with random initial parameters, the EM
algorithm alternates between E-step and M-step round by round until the stop condition is satisfied. In the

(t + 1)-th round E-step, it computes the likehood functionQ(θ ,θ t ) =
R∑
r=1

∑
S
p(S |Or ;θ t ) lnp(Or , S |θ ), and in M-step

it finds a new estimation θ (t+1) to maximizes the Q-function. The details of two steps are as follows:
E-step: In this step, Q(θ t+1) based on the old parameter θ t in t-th round is computed. Given an observation

Or = Or,1Or,2...Or,n ...Or,N , the joint probability distribution over both hidden and observation variables is

p(Or , S |θ ) = p(sr,1 |π )
N∑
n=2

p(sr,n |sr,n−1,A)
N∑

m=1
p(Or,m |sr,m , µ,σ ). (12)

In order to compute the Q-function, the forward distribution α(sr,n) and backward distribution β(sr,n) are
defined as,

α(sr,n) = p(Or,1,Or,2, ...,Or,n , sr,n |θ
(t )),

β(sr,n) = p(Or,n+1,Or,n+2, ...,Or,N , sr,n |θ
(t )).

(13)

Here, α(sr,n) can be computed in a forward fashion, and β(sr,n) can be computed in a backward fashion:

α(sr,n) = p(Or,n |sr,n)
∑
sr ,n−1

α(sr,n−1)p(sr,n |sr,n−1),

β(sr,n) =
∑
sr ,n+1

β(sr,n+1)p(Or,n+1 |sr,n+1)p(sr,n+1 |sr,n),
(14)

Obtaining the forward distribution α(sr,n) and backward distribution β(sr,n) , the other two probabilities
of hidden states can be computed: (1)γ (sr,n = k), i.e., the probability of n-th hidden state to be k ; (2) ξ (sr,n =
j, sr,n+1 = k), i.e., the probability of two consecutive states to be j and k . These two distributions are given by

γ (sr,n) = p(sr,n |Or ) = α(sr,n)β(sr,n)/p(Or ),

ξ (sr,n , sr,n+1) = p(sr,n1 , sr,n |Or ) = α(sr,n−1)p(sr,n |sr,n−1)P(Or,n |sr,n)β(sr,n)/p(Or ),
(15)

where p(Or ) =
∑

sr ,N α(sr,n).
With the definitions of γ and ξ , the Q-function can be expressed from (12) as,

Q(θ ,θ t ) =
R∑
r=1

K∑
k=1

γ (skr,1) lnπk +
R∑
r=1

N∑
n=2

K∑
j=1

K∑
k=1

ξ (s jr,n−1, s
k
r,n) lnAj,k +

R∑
r=1

N∑
n=1

K∑
k=1

γ (skr,n) lnp(Or,n |µ,σ ), (16)

where skr,n is binary variable, and skr,n = 1 means the n-th hidden state is k . The whole training process is shown
in Algorithm 1.
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M-step: From (16), it’s interesting to see that the initial distribution π , the transition probabilities A and the
mean and variance of observation probability µ,σ are independent. Using Appropriate Lagrange multipliers, the
parameters are easily to be achieved as follows:

π (t+1)
k =

1
R

R∑
r=1

γ (skr,1),

A(t+1)
j,k =

1
Ξj

R∑
r=1

N∑
n=2

ξ (s jr,n−1, s
k
r,n),

µ(t+1)k,l =
1
ΓK

R∑
r=1

N∑
n=1

γ (skr,n)or,n,l ,

σ (t+1)
k,l =

1
ΓK

R∑
r=1

N∑
n=1

γ (skr,n)(or,n,l − µ(t+1)k,l )2,

(17)

where ΓK =
R∑
r=1

N∑
n=1

γ (skr,n), Ξj =
R∑
r=1

N∑
n=2

K∑
i=1

ξ (s jr,n−1, s
i
r,n).

ALGORITHM 1: HMM training by EM algorithm
Input: Observation dataset O = {O1,O2, ...,OR }(1 ≤ r ≤ R), Maximum IterationsMaxIter ;
Output: HMM parameters θ = {π ,A, µ,σ };
Procedure:

Initialization: t = 0, initial π (0)
k = 1/K , A(0)

j,k = 1/K , µ(0)k,l = random(0, 1), σ (0)
k,l = 0.01, ∀1 ≤ j,k ≤ K , 1 ≤ l ≤ L.

while t < MaxIter do
E-step: Calculate α(sr,n )(t+1), β(sr,n )(t+1), γ (sr,n )(t+1), ξ (sr,n )(t+1), ∀1 ≤ r ≤ R, 1 ≤ n ≤ N utilizing old parameters
θ (t ) by (14) - (15).

M-step: Update π (t+1)
k , A(t+1)

j,k , µ(t+1)k,l , σ (t+1)
k,l , ∀1 ≤ j,k ≤ K , 1 ≤ l ≤ L utilizing γ (sr,n )(t+1), ξ (sr,n )(t+1) by (17).

Update t : t = t + 1
end

APPENDIX II: EVALUATION METRICS
For each region r in each time slot n int the test set, we denote the truth app usage X̂ (r ,n, l)(1 ≤ l ≤ La) as a
vectorUr,n and the corresponding prediction vector asU pre

r,n . We also denote the truth population as Lr,n , Ar,n

and Sr,n and the corresponding prediction as Lprer,n , A
pre
r,n and Sprer,n . Then the TopN-hitrate, TopN-accuracy and runs

as follows:

TopN − hitrate =

(∑
r

(
|Ur,n ∩U

pre
r,n | ≥ 1

))
/R, (18)

TopN − accuracy =

(∑
r

|Ur,n ∩U
pre
r,n |

N

)
/R, (19)

Error f or leavinд =

(∑
r

|L
pre
r,n − Lr,n |

Lr,n

)
/R, (20)
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where the error for arriving and staying is the same with the formula for leaving.
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